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Chapter I 

INTRODUCTION 

In his paper published in 1915, €3. G. Galerkin [46) solved a num-. 

ber of problems on the equilibrium and stability of rods and plates by 

a method which has become associated with his name, the Galerkin method. 

Following this publication, a large amount of work has appeared in which 

the method has been extensively applied to the practical solution of di- 

verse problems. 

application. 

The lack of proofs on convergence has never hindered its 

The first substantiation of the Galerkin method was given 

in 1940 by Repman 

and in the same year an analogous result for a certain special ordinary 

fourth-order differential equation was obtained by Petrov [52]. In 1950 

Mikhlin [5l] obtained a fairly general sufficient condition for the con- 

vergence of the Galerkin method and demonstrated the application of this 

criterion to a number of problems which included the previously published 

results. 

in application to Fredholm type integral equations, 

Through the years many modifications to the so-called classical 

Galerkin method have been suggested and used, in the vast majority of 

cases without proof of convergence. Justification is usually mde on the 

basis of comparison of successive approximation o r  by comparison with ex- 

periment or  other approximate solutions. 

about 1 9 7 )  that mathematicians (almost exclusively Russian) have begun to 

use functional analysis to obtain proofs for approximation methods and, in 

particular, the Galerkin and related methods. 

It is only  in recent years (since 
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The c l a s s i ca l  Galerkin method can b r i e f ly  be described as follows: 

Let A be a l inea r  operator defined on a s e t  DA which i s  dense 

i n  some separable Hilbert space where a solution t o  the equation 

i s  required. A s e t  of l inear ly  independent elements {qn\ i n  DA a re  

selected and are cal led coordinate functions. For each integer n, an 

approximate solution of (1.1) is  constructed i n  the form of a l inear  com- 

bination of the first n coordinate functions w i t h  constant coefficients, 

that is, 

. 

n 

The coefficients an a re  determined by replacing u by u i n  (1.1) n 

and requiring the left-hand side of (1.1) t o  be orthogonal t o  the first 

n coordinate functions ql, ..., qn. This leads t o  the following system 

of n l i nea r  equations i n  the n unknowns ak: 

Closely connected with the Galerkin method is  the method of 

weighted residuals. 

dent functions (qn\ i n  

nth approximate solution i s  again given by (1.2), but the coefficients 

i n  t h i s  case are obtained as the solution of the following system: 

In t h i s  method, a second s e t  of l inear ly  indepen- 

The DA, called weight functions, i s  selected. 

... 
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In connection with these and similar methods there are several 

outstanding and very practical problems. It is desireable to have some 

definition of an optimal approximation to the exact solution using 

methods of this type. 

selecting a set of optimal coordinate functions and a set of optimal 

Once such a definition is given, the question of 

weight functions remains. In addition, the question of the convergence 

of the approximate solutions to the exact solution is ever present. 

Furthermore, from a practical point of view, it is important to develop 

computational techniques which make efficient use of these methods as 

well as to anticipate any computational problems involved. 

The purpose here is to attack the above problem areas as well as 

to present a concise, lucid guide to efficient and economical application 

of these methods and their modifications. 

classification of Galerkin type methods is given with existing convergence 

theorems. Finally, the last chapter includes a bibliography which repre- 

sents a rather extensive search. Most of the references not included are 

those which make a straight-forward application of a method. 

In addition a rather complete 



Chapter I1 

GENERAL ASPROXIMATION THl3ORY 

It i s  the purpose of th i s  chapter t o  s t a t e  the general def ini t ions 

used i n  the sequel and t o  present an outline of approximation theory [49] 

from a somewhat general point of view which w i l l  include some l a t e r  

methods as special  cases. 

A. General Definitions 

A l i nea r  space over the f i e l d  of r e a l  (complex) numbers is  a s e t  

V of elements called points or  vectors sat isfying the following axioms. 

(1) To every pair ,  f and g, of elements i n  V there corresponds 

an element f + g called the sum of f and g. With respect t o  the 

operation +, V is  an abelian group, i .e. 

(a) + is commutative, f + g = g + f ,  

(b) + is  associative, f + (g + h)  = (f + g)  + h, 

(c) there ex is t s  i n  V a unique element 0 such that 

f + 0 = f f o r  every f i n  V, and 

(d) fo r  each f i n  V there corresponds a unique element 

-f i n  V such that f + (-f) = 0. 

(2) To every pair ,  a and f, where a is a r e a l  (complex) num- 

ber and f i s  an element of V, there corresponds an element af i n  V, 

called the product of a and f ,  such tha t  

4 



(a) sca la r  multiplication i s  associative, (M)f = a@), 

(b) If = f, O f  = 0 f o r  every f i n  V, 

(c)  scalar  multiplication i s  d is t r ibu t ive  w i t h  respect t o  

vector addition, a(f + g) = af + ag, and 

(a) multiplication by vectors i s  d is t r ibu t ive  w i t h  respect 

t o  scalar  addition, (a + j3)f = af +. j3f. 

Elements fl, .. ., fn in V are l inear ly  independent if  the 

re la t ion  

a f + ... + anfn = 0 1 1  

are  l inear ly  fn  holds only f o r  a1 = ... = a = 0; otherwise fl, ..., 
dependent. 

n 
"Ifl + ... + anfn i s  called a l inear  combination of the 

elements fl, ..., fn. A l i nea r  space V i s  n-dimensional i f  V con- 

ta ins  n l inear ly  independent elements and i f  any s e t  of n + 1 ele- 

ments i n  l inear ly  dependent. If f o r  each posit ive integer n, V contains 

n l inear ly  independent elements, then V i s  in f in i t e  dimensional. A 

non-empty subset M of V is  a subspace i f  fo r  every pair ,  fl and f2, 

of elements of M, every l inear  combination, 

tained i n  M. If fl, ..., fn a re  l inear ly  independent i n  V, the  space 

of a l l  l i nea r  combinations of fl, ..:, fn i s  called the subspace spanned 

yfl+ a2f2, is  a l so  con- 

i s  called a fl, * * * ,  fn  and is  denoted by Sn(f) and fl, ... fn 

basis for  Sn(f) .  

A l i nea r  space V is  an inner product space i f  f o r  each pa i r  of 

elements, f and g, i n  V there is a real (complex) number (f, g ) j  
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called the inner (or scalar)  product of f and g which satisfies the 

following conditions.: 

(4) (f, f )  = 0 i f  and only i f  f = 0. 

The norm of the  element f i n  V, denoted by 11 fll, is  defined by - 

The following properties of the norm can be derived from the properties 

of the inner product. 

(2) I (f, g)! 5 11 f 11 11 g11, the  Cauchy inequality 

( 3 )  llf + gll 5 11 f 11 + 11 gll, the  t r iangle  inequality 

Two elements f and g are said t o  be orthogonal if 

(f, g>  = 0. 

An element f i s  normalized if 

llf II = 1. 
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/ 

An inner product space V becomes a metric space i f  the distance 

between two elements, f and g, i n  V, denoted by d(f,  g) is defined 

as 

From the properties of the norm, it can be shown that the function d 

satisfies the usual conditions f o r  a metric, i.e. 

(4) d(f,  g) = 0 i f  and only i f  f = g. 

If V is a metric space and is a sequence of elements of 

V, then f in V is  sa id  t o  be the l i m i t  of the sequence fn, writ ten 
-_.- 

fn  + f  o r  &gw fn  = f, if 

l i m  d(fn, f )  = 0. 
n+w 

CQ 

The sequence i s  sa id  t o  converge t o  f.  This  type of conver- 

gence is called strong convergence or norm convergence. The sequence 

(fn} n=l  

- 
i s  said to be a Cauchy (or  - fundamental) sequence, i f  for  each {fn> n:l 

E > 0 there i s  an integer NE such that f o r  a l l  m, n > NE 
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A metric space 

t o  an element of V. 

V is called complete i f  every Cauchy sequence converges 

A Hilbert space H i s  an i n f i n i t e  dimensional inner product space 

which i s  a complete metric space with respect t o  the metric induced by the 

inner product. H is  a separable Hilbert space i f  H contains a sequence 

of elements 

subspace spanned by the s e t  {fn} along with l i m i t s  of a l l  Cauchy sequences 

i n  S ( f ) ,  i s  the space H. Thus i f  H is  a separable Hilbert space, each 

element f of H can be approximated with a r b i t r a r i l y  prescribed accuracy 

by a f i n i t e  l inear  combination of the elements 

to 
such t h a t  S ( f ) ,  the closure of S ( f ) ,  that is, the 

{fn} n=l 

The space L2[a, b] of functions which a re  square integrable ( in  

the Lebesque sense) on i s  an example of a separable Hilbert space. 

I n  t h i s  case, denoting by p the measure on [a, b], the inner product of  

f and g i n  L,[a, b] i s  defined as 

[a, b] 

b 
(f, g )  =I 

a 

and the norm of f thus becomes 
1 
2 
- 

I I f l l =  4lf,;Tcj =[J” a f%] . 

Norm convergence i n  L2 i s  called mean convergence. 

Let G be a subspace of a separable Hilbert space H. It can be 

shown tha t  t o  each element h i n  H there corresponds a unique element 
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g i n  G such that 

i n  

an1 

Furthermore, 

G 

IIh - gII = inf 11 h - g'/ l .  
gtcG 

h - g i s  orthogonal t o  the subspace G, i.e., f o r  each g '  -- 

h can ,e represente 

g, g ' >  = 0, 

n the  form 

h = g + f  

where geG and f i s  orthogonal t o  G. The element g i s  called the 

orthogonal projection of h on the subspace G. 

W 
A set  M = {fn) which s a t i s f i e s  

n=l 

0 f o r  m # n 
1 f o r  m = n, and 

( 2 )  (fn, fn) = 1 f o r  n = 1, 2, ... 
is  called an orthonormal system or  sequence. 

independent ( f i n i t e  o r  countable) s e t  of elements, 

t o  construct an orthonormal set ,  

From a given s e t  of l inear ly  

{gn \ 3  

- 
it i s  possible 

so that each fn is a l inear  com- ifnl, 

bination of the g m = 1, ..., n. One such method of orthonormalization 

is  the Gram-Schmidt process. An orthonormal ( l inear ly  independent) system 

i s  sa id  complete i f  it i s  not contained i n  any larger  orthonormal ( l inear ly  

independent ) s e t ,  

m' 
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Let D denote a subspace of the separable Hilbert space H. A 

function T which re la tes  t o  each element f i n  D a par t icular  ele- 

ment T f  = g i n  H is  called an operator i n  the space H with domain 

D. The s e t  

+ = (g€H : T f  = g, f € D /  

is  called the range of T. The domain of T i s  denoted by DT. The 

operator which maps each element onto i t s e l f  is  called the ident i ty  

operator and is  denoted by E. 

If the  operator T i s  one-to-one, tha t  is, f o r  each d i s t inc t  pair, 

fl  and f2, i n  DT, T f l  # T f g  i n  +, then T has an inverse denoted 

by T - l  which maps + onto D. Furthermore, T- lg  = f i f  and only i f  

Tf  = g. 

L e t  S and T be two operators such t h a t  +fDs i s  not empty. 

Then the product of S and T is  defined as - - - -  

STf = S ( T f ) .  

An operator T is  l inear  i f  f o r  each pa i r  f and g i n  DT and 

scalars a and p 

T ( a f  + pg) = a T f  + PTg. 

The norm of an operator T, denoted by 11 Til, is defined as --- 

as f ranges over DT and llfll 5 1. 
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An operator T i s  bounded i f  IIT 11 i s  f i n i t e .  

The operator T is said t o  be continuous A -  a t  a point fo  i n  DT 

if fo r  each E > o there ex is t s  a 6 = 8 ( ~ )  > o such t h a t  f o r  each f 

i n  DT with 

11 f - fo 11 < 6 we have 11 Tf  - Tfo  11 < E. 

If T is  an a rb i t ra ry  bounded l inea r  operator on H, there ex is t s  

a unique bounded l inea r  operator T* such t h a t  11 T 11 = IIT*ll and f o r  

each f and g i n  H 

The operator Tx- i s  called the adjoint of T. It is  easy t o  see that 

(T*)* = T. If Tx- = T, then T is said t o  be self-adjoint.  

A self-adjoint operator T is  defined t o  be posit ive i f  f o r  each 

f i n  DT 

(Tf, f )  - > 0. 

If (Tf, f )  = 0 implies f = 0, then T i s  said t o  be posit ive def ini te .  

The energy product of t w o  elements f and g i n  DT is (Tf, g) ,  and 

the energy norm, denoted by Ilfll, is 

W 
i n  DT is  said t o  converge in energy A sequence of elements - 

t o  the element f i n  DT i f  

M 
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It can be shown that energy convergence implies mean convergence [38] .  

A linear operator T is said to be symmetric if DT is dense in 

H and for f and g in DT 

It is easily verified that a symmetric operator T such that DT = H is 

self-adjoint. 

A set C is compact if every infinite sequence in C contains a 

convergent subsequence. A linear operator T such that DT = H is said 

to be completely continuous if it maps each bounded set into a set which 

is compact. 

Let H be a separable Hilbert space and G be a subspace of H 

such that each element h in H has a unique representation in the form 

h = g + f  

where g is the orthogonal projection of h on G. The operator which 

maps h into its orthogonal projection g on G is called the ortho- 

gonal projection operator and is denoted by PG or simply P if the sub- 

space G has been previously specified. An orthogonal projection operator 

is linear, bounded, and 11 P 11 = 1. In addition, P2 = P and Pn = P. 

A complex number h is called an eigenvalue of the linear operator 

T if there exists a element f # 0 such that 

Tf = hf. 
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The vector f i s  called an eigenvector belonging t o  the eigenvalue X. 

A subspace G of  H i s  cal led an invariant subspace of the oper- 

a tor  T if every element of DT in G i s  mapped by the operator T 

into an element a l so  i n  G. 

- 
Given a complete orthonormal s e t  ifn[ in S(f) each function 

g has the unique representation 

an6 th i s  is  called the Fourier se r ies  of g re la t ive  t o  the set {fnl.  

The orthogonal projection of g on Sn(f)  can be writ ten 

B. Theorems 

L e t  x be a complete subspace of the normed space X and P de- 

note a projection from x onto H, i. e. 

2 P(X) = x; P = P. 

We first consider an equation of the form 

Kx x - XHX = y 

i n  the space X, called the exact equation, and an equation 

- 
for f x - A& = Py (2-9 

i n  z, called the approximate equation. The operators H and 2 are 

l inear .  
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In order t o  make the rather  abstract  se t t ing  more eas i ly  understood, 

we w i l l  take an example t o  i l l u s t r a t e  the the0r.y as we proceed. 

Le t  {(pi\ be an orthonormal sequence i n  L2. Let X = ~m and 
- 

Y X = Sn((p). Then the operator P could be defined as the orthogonal 

projection from x onto F. 

The following conditions w i l l  play an important ro le  i n  the sequel. 

11. For every x i n  X there is an X i n  such that  

ll& - XI1 5 7 1  IIX 11. 

111. For each y i n  X there i s  a 7 i n  such tha t  

I1 Y - 7 II L 72 II Y II * 

IV. If a solution ex is t s  f o r  equation (2.2) then the solution i s  unique. 

In our example, condition I could be sa t i s f i ed  i f  E = PH. I n  

such case 7 = 0 i s  an acceptable choice. Furthermore, conditions I1 

and I11 would be sa t i s f i ed  provided 

sequence {qiI is  complete. 

n i s  suf f ic ien t ly  large since the 

Condition IV w i l l  always hold f o r  completely continuous operators. 

We hope t o  be able t o  solve the approximate equation and have an 

approximation t o  the exact equation. 

approximate equations and solutions obtained from these. 

Suppose that we have a sequence of 

Then the space 



- 2, together with the operators H and and the constants in condi- 

tions I, 11, and I11 depend on an index 

sake of simplicity. 

n, which we shall omit for the 

The obvious question is whether or not such a sequence of approxi- 

mations converges to the exact solution. 

Theorem 2.1. If the following conditions are satisfied: 

(1) K has a linear inverse 

(2) E satisfies IV for each n 

( 3 )  I, 11, and I11 hold for each n 

then the approximate equations are soluable for  sufficiently large n and 

- 
lim IIx - xnII = 0. 
n+ 03 

These sufficient conditions for convergence can be phrased in 

another form when i? = PH. 

Theorem 2.2. If E = PH and the following conditions are satisfied: 

(1) x is complete 

(2) lim pnx = x 
n* 

( 3 )  H is completely continuous 

(4) x is not the reciprocal of an eigenvalue of H 
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then the approximate solutions converge t o  the exact solution. 

Corollary: The character is t ic  values of H a re  l i m i t s  of sequences of 

character is t ic  values of E n* 

In our example, X is  complete and t h e  orthogonal projectors con- 

verge t o  the ident i ty  so (1) and (2) of Theorem 2.2 a re  sa t i s f ied .  

We shall now consider equations i n  which the left-hand s ide does 

not contain the ident i ty  operation expl ic i t ly  and moreover represents an 

operation from the  or iginal  space not in to  i t s e l f  but into another normed 

space. In sp i t e  of these differences as compared w i t h  the equations dis- 

cussed above, these a re  reducible t o  the former type. 

We suppose that X and Y a re  normed spaces, from each of which 
- 

complete subspaces X and y, respectively, have been chosen. We suppose 

tha t  F i s  a l inear  operator projecting Y onto y. 

A s  before, we consider two equations, the exact 

and the corresponding approximate equation 

Here, G and T (and %) a re  l inear  operators mapping X in to  Y while 
- - 
T (and El) are l inea r  operators from X in to  Y. We further assume that 

G has a l i nea r  inverse 

tween % and y. In t h i s  se t t ing  conditions I through I11 above become: 

and establishes a one-to-one correspondence be- 

F 



Ib. For every x in X 

IIFE - BII< /J. II Z I1 

Im. For every x i n  X there is a 7 i n  such t h a t  

ll= - 7 ll 5 P I  II x II 

1123. For each y1 i n  Y there i s  an element 7 i n  F such that 1 
- 

l l Y l  - Y1Il 5 p2 I l Y ~ I I  

Writing, under the  above assumptions, (2.1) and (2.2) as 

it can be shown t h a t  conditions I through I11 hold. 

The preceding theorems can be res ta ted  i n  t h i s  se t t ing .  

Theorem 2.3. If the following conditions a re  sa t i s f i ed :  

(1) ~1 has a l i nea r  inverse, 

(2) s a t i s f i e s  I V  f o r  each n, 

( 3 )  Ib, IIb, IIB are  satisfied fo r  each n, 

(4) l i m  p = 0; l i m  pill F II= 0; l i m  p21(F II= 0, 
P+ V.-j" P"W 

then the approximate equations a re  soluable for  suf f ic ien t ly  large n, 

and the sequence of approximate solutions converges t o  the exact solu- 

t ion.  
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A s  before when the approximate equation is obtained by projection 

of the exact equation, the theorem can be formulated different ly .  

Theorem 2.4. If = FT and the following conditions a re  sa t i s f ied :  

(1) Y i s  complete 

(2) l i m  Fnx = x 
n+ ~0 

( 3 )  G - ~ T  is  completely continuous 

then the approximate equations a re  soluable f o r  suf f ic ien t ly  large 

and the approximate solutions converge t o  the exact solution. 

n, 

c .  summary 

From the above we conclude t h a t  when presented an operator equa- 

t i o n  t o  solve, we must decide into which general category it falls. 

is, decide whether it is of type l w i t h  the  ident i ty  expl ic i t  o r  type 2. 

Then several  other def ini t ions must be made. There is a great deal  of 

f lexibi l i ty  i n  these, but cer ta in  choices a re  sometimes more judicious 

than others. 

the character of the operators as w e l l  as the boundary conditions and 

the par t icular  method of solution employed. 

That  

There is no general ru le  since the choice i s  influenced by 

The following is  an outline of the s i tuat ion.  



Ty-pel. x - h & = y  

Define: (1) the  

(2) the  

( 3 )  the  

A t  th i s  point the 

possible t o  check 

i f  e i the r  Theorem 

- 
'n space X and the subspace 

'n projection 

operator E n 

approximate equation i s  determined, and it may be 

conditions I through IV.  

2.1 o r  Theorem 2.2 applies t o  prove that the approxi- 

It must then be determined 

mate solutions converge. 

Regarding type 2, it should be pointed out that the first s tep 

There may be here is t o  w r i t e  the  given equation in the proper form. 

more than one way t o  do th i s ,  and one version may be more amenable than 

another. Again, there is no general principle.  However, it must be 

kept i n  mind t h a t  G must be one-to-one and have a l inear  inverse. 

Type 2. Gx - h % = y  

Define: (1) the spaces X, %, Y and 7 

(2) the projection F 

( 3 )  the operator T 
- 

A s  above the approximate equation is now determined and, perhaps, con- 

di-bion Ib through IIIb, and I V  can be checked. 

determine i f  the theorems apply t o  prove convergence. 

Also it remains t o  

The above procedures are exhibited i n  the  examples. 



Chapter I11 

CLASSIFICATION OF MJ3I'HODS OF THE GALEEXIN TYPE 

Since Galerkin first used h i s  technique t o  solve a problem i n  

mechanics, a vast  number of modifications have been suggested. The 

purpose of this section i s  t o  c lass i fy  these suggested modifications 

and t o  outline t h e i r  application. 

e r a l  approximation theory considered i n  the last chapter. 

have been rather  widely used but a re  without convergence proofs. 

w i l l  be carefully noted along with the l imitations of the other methods. 

Certain of these fa l l  into the gen- 

Some of them 

These 

We first s t a t e  the definit ions applicable t o  t h i s  chapter, then 

c lass i fy  and describe the methods and i n  the f i n a l  section summarize 

the resu l t s  and draw cer ta in  conclusions. 

The methods a l l  involve the solution of the equation 

L(u) = 0 (3 .1 )  

where u is  defined on a domain D bounded by C, L i s  an operator i n  

a separable Hilbert space and on C 

Bi(u) = gi, i = 1, ..., p ( 3  2 )  

are  the appropriate n W e r  of boundary conditions. 

here, and w i l l  be pointed out below, that the methods discussed a re  pr i -  

marily designed f o r  boundary valve problems and cer ta in  careful  modifica- 

t ions must be made t o  even apply any of these methods t o  i n i t i a l  value o r  

other types of problems. 

It should be noted 

The methods t o  be described involve the selection 

20 
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of two l inear ly  independent sets of functions: the first called co- 

An - nth approximation t o  the solution i s  obtained i n  the form 

u = f(Cl, . * * ,  Cn, vl, ... v n ) (3.3) n 

where 

and the functions (pe rhps  constants) 

procedures described below. 

f i s  a function of some selected form (e.g., a l inear  combination) 

ci a r e  determined by one of the 

A. Definitions 

Definition 3.1: The operator residual, denoted by RL(un), i s  the 

r e su l t  of operating by L on un. Thus R,.,(un) = L(un). 

Definition 3.2: The component boundary residuals, denoted by 

%. (un), are  the r e su l t  of subst i tut ing un fo r  u i n  the boundary 

conditions. 

1 

Thus €$. (u,) = Bi(un) - gi, i = 1, . . ., p. 
1 

Definition 3.3: The boundary residual, denoted by F$(un), i s  

the sum of the absolute values of the  component boundary residuals. 

Definition 3.4: A method of solution is  called an in t e r io r  method 

provided that the coordinate functions are  chosen t o  sa t i s fy  the boundary 

conditions and the f'unctions {ci\ a r e  determined by requiring that the 

operator residual be orthogonal t o  the  first n weight functions through- 

out the region D. That is  
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(%(un), w j )  = o j = 1, . , n. (3.4) 

Definition 3.5: A method of solution is  called a boundary method 

provided that the coordinate functions are chosen t o  satisfy the operator 

equation, and the fbnctions {til are  determined by requiring tha t  the 

boundary residual  be orthogonal t o  the first 

boundary C. That is 

n weight functions on the 

(%(un), w j )  = o j = 1, ..., n. (3.51 

Definition 3.6:  A method of solution is  called a mixed method 

if it is neither i n t e r io r  nor boundary. 

It should be noted that generally i n  the mixed method described 

If above both the boundary and operator residuals must be considered. 

we require that both the  boundary residual and the operator residual be 

orthogonal t o  the first n weight functions, we w i l l  obtain 2n equa- 

t ions fo r  the n unknowns {ci{. It has been suggested that  such a 

s i tua t ion  be remedied by: 

(1) 

as the equations a re  independent although consideration is given t o  those 

Discarding some of the equations; the choice is arb i t ra ry  as long 

character is t ics  of the problem which a re  most important [ 29 ] .  

how such a decision should be made i s  not stated.  

Exactly 

n - 
( 2 )  Using 2, instead of n, weight functions (n must, of  course, be 

even) [13]. 

( 3 )  

weight functions [ 361. 

Adding the residuals and making t h i s  sum orthogonal t o  the first n 



None of these suggestions are proved t o  be valid and a re  merely 

ways of obtaining n equations i n  n unknowns. The so le  motivation 

for  the rather  a rb i t ra ry  choice seems t o  be a matter of t a s t e .  

B. Specific Methods 

There a re  four fundamental c lass i f icat ions of methods of  the 

Galerkin type. 

I. General: This i s  simply t o  solve the system (3.4) using the 

form ( 3 . 3 )  as it stands. Unfortunately, it can be quite d i f f i c u l t  t o  

achieve such a solution, and a cer ta in  amount of ingenuity may be re- 

quired t o  se lec t  an appropriate form fo r  

conditions, e tc .  

f ,  t o  s a t i s f y  the boundary 

11. Shulesko Technique: This i s  a mixed method wherein p + 1 

sets of coordinate functions are chosen, (vi> .w and (".il O3 Y 

1=1 i=l 

k = 1, ... p. The nth approximation i s  sought i n  the form 

Furthermore two complete se t s  of weight 
l s j t y  iwjl  are functions 

selected. 

residuals orthogonal t o  the first n weight functions s The bi 

a re  determined by making the operator res idual  orthogonal t o  the first 

n weight functions w [ L c l ] .  

The {aikl are then determined by making the component boundary 

j '  

3' 

ki> Ll 111. Method of Weighted Residuals: A set of functions 

is chosen t o  s a t i s f y  the boundary conditions. The nth approximation 
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n 
takes the form u =x civ( and the {ci) 

i=l n 

operator residual orthogonal t o  the first 

a re  determined by making the 

n of any s e t  of l inear ly  

independent weight functions Pj) ~481. 
j=1 

IV.  Classical  Galerkin: A set of coordinate functions of the 

required number of variables, l inear ly  independent and complete, is  

chosen t o  s a t i s f y  the boundary conditions. 

the form un =E civi where the {ci} a re  constants determined by making . 

the operator residual orthogonal t o  the s e t  of coordinate functions. 

Thus the coordinate functions themselves become the weight functions 

The nth approximation has 
n 

i=l 

C381 

Notice that I1 includes I11 i n  the case i n  which t { k i )  E (.i} 

and satisfy the boundary conditions; it includes I V  i n  the case i n  which 

{tki) {vi} and satisfy the boundary conditions and {wj>. (yi}. In 

addition, I11 includes I V  when {vi} {wj}. 

There are several  s l i gh t  modifications and variations on the 

above theme. 

lem t o  be solved; f o r  example, whether or  not the operator i s  l inear,  

the boundary conditions homogeneous, e tc .  Some of these a re  indicated 

below. 

These depend on the specif ic  character is t ics  of the prob- 

(1) Ames Method 

When the problem i s  an i n i t i a l  value problem, where the range of 

the non-negative r e a l  numbers, the  nth approximation is  taken i n  the 

t i s  
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n 

i=l 
form u 

conditions. 

weight functions (according t o  I11 o r  I V )  on the in te rva l  

=c civi n where the coordinate functions s a t i s f y  the i n i t i a l  

The operator res idual  is then made orthogonal t o  a s e t  of 

[0, T] where 

T is regarded as the time when steady state is achieved. Hopefully, T 

may be estimated from the physical nature of the problem [3l]. 

Chapter V f o r  a fur ther  discussion of t h i s .  

See 

(2) Bickley Method 

When a l i nea r  problem involves the variables x and t, the nth approxi- 

mation may be taken i n  the form u =g ci( t )vi(x) .  Thus the members of n 
i=l 

{ci(t)} a re  unknown functions of t and may be determined from the eondi- 

t ions of 111 or IV [18]. 

(3) Crandall Method 

When L is a partial d i f f e ren t i a l  operator, it i s  possible to  reduce the 

problem t o  an ordinary d i f f e ren t i a l  system i f  we are  given i n  addition t o  

(3.1) and (3.2) an appropriate 

I J U )  = 

The nth approximation i s  taken 

number of i n i t i a l  conditions: 

k = 1, ..., r ( 3 -  6 )  

'n 

1=1 
i n  the form u =c ci(t)vi  where n 

03 

{vi) is  l inear ly  independent, complete, and s a t i s f i e s  the boundary 
i=l 

conditions but not the i n i t i a l  conditions o r  the d i f f e ren t i a l  equation. 

Thus, i n  addition t o  the operator residual, we define an i n i t i a l  residual 

t o  be: 
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Making these residuals orthogonal t o  the first n of a complete se t  of 
m weight functions , we obtain the two systems of equations: { wj t j=l 

(a) RI(un)wjdT = 0 
T 

and 

f o r  j = 1, . . ., n. 

fe ren t ia l  equations i n  the 

conditions f o r  them, allowing solution e i the r  exactly o r  approximately 

From equation (b) we get  a system of ordinary dif-  

c i ( t )  , and equation (a) w i l l  specify i n i t i a l  u 
(4) Generalized Moments Method 

W. V. Petryshyn [53] has suggested a method f o r  the solution of the eigen- 

value problem 

T - ~ S U  = 0 (3.7) U 

where the operators T and S a re  l inear,  unbounded and nonsymmetric, 

and T i s  K-positive def ini te .  An operator i s  sa id  t o  be K-positive 

def in i te  provided there i s  a closeable operator K with D > DT mapping 

DT onto a dense subset of H and two posit ive constants a and a2 

such that 

K -  

1 

and 



An operator K is closeable i f  u { n t  
verging t o  f imply f is  zero. He a l so  suggested the method fo r  

converging t o  zero and {Kun} con- 

AU -+ BU = f (3 .8 )  

where A is  K-positive def ini te ,  and B is  a l inea r  unbounded operator 

[34]. 

functions a re  chosen as the K-images of the coordinate functions. 

author points out t ha t  i f  

The method is  the method of weighted residuals where the weight 

The 

T (or A )  i s  self-adjoint, the method reduces 

to the c lass ica l  Galerkin method (i. e., K = I). 

Certain of the above are special  cases of the general theory of 

the preceding chapter. The c l a s s i ca l  Galerkin method is  a special  case 

i n  the following way. If the operator L has the form of  type 1, the 

space X is taken as the completion of the subspace of Lg spanned by 

coordinate functions and the subspace as the subspace spanned by the 

first n coordinate functions. Further, P i s  taken as the orthogonal 

projection operator from X onto and E i 8  defined as PH. The 

3’ approximate equation then gives, on taking the inner product w i t h  9 

(E - AH F, cpj )  = (PY, cpj )  j = 1, ... n. 

Simplifying, using the self-adjointness of P and the  fact  that  

~ ( c p . )  = cp j, j - < n, gives J 

(Z, (pj)  - x (EF, ‘pj) = (y, cpj )  j = 1, ... n ( 3 . 6 )  

which is  exactly the Galerkin system of equations. Since 

n 
E =E aicpi 

i=l 
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a 

i’ equation (3.6) gives n equations i n  the n unknowns a 

If the operator is o f  type 2, then X and a re  taken as 

above. Further, Y and f are taken as G(X) and G(T) ,  respectively. 

The operator F i s  taken as the orthogonal projection from Y onto ?. 

Then the approximate equation is  

A s  above th i s  gives rise t o  the system 

This system determines the nth approximation. 

The method of weighted residuals can also be considered as a 

special  case o f  the general theory under cer ta in  conditions. 

method the same approximate equations as above are  employed, but the 

inner products a re  taken w i t h  weight functions {wit other than the co- 

ordinate f’unctions. This gives 

In th i s  

and 

for  types 1 and 2, respectively. The self-adjointness of P (or F) 

can be invoked t o  w r i t e  

Y 



However, unless w is i n  the span of the first n coordinate func- 3 
tions, P w .  # w Therefore, it can be concluded tha t  the method of 

J 3' 
weighted residuals i s  a special  case of the general theory only when the 

span of the first n coordinate functions includes the first n w e i g h t  

functions. (See i n  t h i s  connection Theorem 4.5 of Chapter I V . )  

This same problem ar i ses  when the coordinate functions a re  not 

orthogonal. 

hence not self-adjoint. 

t i on  of the expansion i n  terms of the coordimte functions a t  n terms. 

This means, i n  particular,  that the right hand s ide of the Galerkin 

In t h i s  case the projection used is  not orthogonal and 

That is, the  projection is  defined as trunca- 

system should be (P y, cp ) and not (y, cp ) t o  be a special  case of the 

general theory. It does, indeed, seem c lear  t ha t  a convergence proof 

using (P y, cpj)  would imply convergence using the r ight  hand side (y, cp ) 

since P y converges t o  y. However, the simple way out of t h i s  apparent 

dilemma about convergence as w e l l  as accuracy of corresponding approxima- 

3 j 

3 

t ions is  t o  u t i l i z e  the following theorem. 

Theorem 3.1: If the coordinate functions {Tit f o r  the l i nea r  problem 

Ay = f 

are  l inear ly  independent but not orthogonal i n  L2 then the nth approxi- 

mation is  the same as the nth approximation using the sequence {<} ob- 

tained by orthonormalization of {'pi}. 

Proof: Le t  G be the nonsingular n x n matrix which takes t o  F, 
i.e., 

\ 

R 



Let P = (ai ) be the n X n matrix where ai = (Acpi, cp,) and Q = (bi ) 
3 j 3 

* * be the n x n matrix where b = (Aqi , cpj ). In addition, let i 
j 

- * --* - - 
yn = c cp and yn = d cp = d@ 

- - 
where c = (e1, ..., Cn) and d = (dl, ..., dn). The Galerkin systems 

are then 

where prime denotes transpose. 

If it can be shown that c = ZG, the proof will be complete. We 

have 

so that 

- -  L(+) Z*' = GL(C~)$+' = ~ ~ ( c p ) r p ' ~ f .  

Integrating the extremes of this gives 

Q = GPG' 



so 

Thus 

ci  = p - h  = (G~Q"-G) (~-1s) = G ~ Q  -1 s = ~131 

and taking transposes gives the resu l t .  

The above theorem does answer the dilemma because orthonormal coor- 

dinate functions {"*I gives 

(Pf, 'pi*) = (f, mi*) = (f, 'pi*) 

since 

the ident i ty  on i ts  range. 

is used i n  the Galerkin system when the coordinate functions a re  ortho- 

gonal. 

gonal l inear ly  independent functions is  the same even though the r ight  

hand side i n  th i s  system is 

P is  an orthogonal projection, i s  self-adjoint and is, of course, 

This means that the "correct" r igh t  hand side 

However, by the theorem, the  approximate solution w i t h  nonortho- 

(f, T ~ ) .  

c. swmnary 

The number of convergence proofs fo r  the above methods i s  quite 

small. 

the e a r l i e r  theorems from the general theory. 

A s  noted above i n  cer ta in  cases a f e w  techniques a re  covered by 

The motivation for  accepting these methods probably stems from the 

following well  known theorem. 

Theorem 3 . 2 .  

if the only function orthogonal t o  each member  of the sequence i s  equivalent 

An orthogonal sequence of functions i s  complete i f  and only 
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t o  zero. This theorem implies t ha t  i f  

Mun) ,  Tj' = 0 

fo r  a l l  j then 

L(un) = 0 

i.e., u i s  a solution, whenever is a complete orthogonal sequence. 

O f  course, only  n values of j a re  used so tha t  un is an "approximate" 

solution. 

ture, the coordinate functions a re  neither orthogonal nor ccanplete. Hence 

the appeal of t h i s  argument wanes. 

n 

I n  practice and i n  f ac t  i n  most of the examples i n  the litera- 

The following is  a summary of essent ia l ly  a l l  of the theorems proved 

i n  regard t o  convergence of the above methods. 

Theorem 3 .3 .  

c lass ica l  Galerkin method converges 5n the mean t o  the exact solution of 

a Fredholm in tegra l  equation [38]. 

If the sequence of coordinate functions is  complete, the 

Theorem 3.4. 

where A. is 
-1 Then i f  A. 

Suppose Au = f has a unique solution and can be writ ten as 

Aou + Ku = f 

symmetric and'positive-bounded-below i n  a Hilbert space H. 

K is completely continuous, the c lass ica l  Galerkin method 

with a complete sequence of coordinate f'unctions converges i n  energy t o  

the exact solution. 

A s  an application of Theorem 3.4 the following r e su l t  can be proven. 

A similar resu l t  holds f o r  the eigenvalue problem [38]. 
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Y 

Theorem 3.5.  Consider the problem 

u(b) = u’(b) = ... = u(~-’) (b) = 0 

where K is  a l i nea r  d i f f e ren t i a l  operator of order 2m-1 such that 

a l l  coefficients are suf f ic ien t ly  differentiable.  Suppose there is a 

unique solution. Then the c lass ica l  Galerkin method with a complete 

sequence of coordinate functions converges to  the exact solution. A 

similar r e su l t  holds f o r  the eigenvalue problem [ 3 8 ] .  

Theorem 3.6.  Suppose, on some domain D, 

-f & (Aik e) + x B i x + C u = f  
1 1 i, k=l  i=l 

where u vanishes on the boundary of D, the coefficients may be variable, 

and the equation i s  e l l i p t i c .  

complete sequence of coordinate functions converges i n  energy t o  the exact 

solution [ 3 8 ] .  

Then the c lass ica l  Galerkin method w i t h  a 

Theorem 3.7.  Suppose, on the  in te rva l  0 - -  < x < ‘ ~ t  and f o r  t 

a2U a~ -.. x-g”=f  ax2 
where 

U(X, 0) = u(0, t )  = U(‘Jt, t )  = 0, 

f, g and t h e i r  first two derivatives are continuous and f(0, 0) = 

f(‘Jt, 0 )  = 0. Then Bickley’s variation of the c l a s s i ca l  Galerkin method 
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with {s in  nx) as coordinate functions converges t o  the exact solut ion 

Theorem 3.7 can be s l igh t ly  generalized. For example a first 

derivative term i n  x could be present and t h e  coeff ic ient  of the 

first derivative i n  t could be a posi t ive function, and the same con- 

clusion w i l l  hold. 

The following is a generalization of Theorem 3.4. 

Theorem 3.8. If the equation 

AU + BU = f 

has' a unique solut ion and T = A-$ can be extended t o  a completely con- 

tinuous operator then f o r  suf f ic ien t ly  large 

approximate solution from the generalized moments methods, and th i s  

sequence converges t o  the solut ion C-41. 

t h  n, there is  a unique n 

Recall t h a t  i n  using the  generalized moments method A should be 

K-positive def ini te .  

Theorem 3.8 is  that there is  no method t o  f ind K 

i f  a given operator is  K-positive def in i te .  

The p rac t i ca l  d i f f i c u l t y  i n  making use of 

o r  even t o  decide 

Considering the above theorems, it is  apparent that the conver- 

gence of the many suggested variations remains f o r  the most pa r t  un- 

proved. 

t h a t  simply apply a method without regard t o  convergence. 

of these techniques appears t o  s t e m  from the  f a c t  that the solutions 

Pa,pers dealing with a method per se are f e w  compared with those 

The acceptance 
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"agree" i n  some sense with e i ther  experiment o r  approximate solutions 

obtained i n  other ways. 



Chapter I V  

Most of t he  theorems, def ini t ions and computational techniques 

s ta ted  i n  t h i s  chapter could not be found i n  the l i t e r a tu re .  

theorems e i t h e r  generalize exis t ing r e su l t s  o r  give new information. 

The techniques of solution of a problem are either a consequence of a 

theorem o r  the r e su l t  of experience with examples. 

The 

We w i l l  consider throughout t h i s  chapter the problem 

Ay = f ( 4 4  

subject t o  homogeneous boundary conditions where A is  a self-adjoint  

l i nea r  operator defined i n  a separable Hilbert  space. If the  boundary 

conditions a re  not homogeneous a s l i g h t  modification t o  the problem w i l l  

usually make them so. In par t icu lar  we investigate the question of 

selecting "optimal" s e t s  of coordinate f'unctions and weight functions 

fo r  the  method of weighted residuals. 

Throughout t h i s  chapter, it is assumed that (4.1) has a unique 

solution which w i l l  be denoted by y3c. In part icular ,  then, the operator L 

is one-to-one and has the property t h a t  f o r  any l i nea r ly  independent s e t  

n i s  l i nea r ly  independent i n  the 
i=l 

range of L. 

A. Definitions 
n Definition 4.1. A l i nea r ly  independent set of functions 

is an L2 optimal Galerkin coordinate set with -- resDect t o  the - 
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operator A - provided that the Galerkin method using t h i s  s e t  of func- 

t ions as coordinate functions gives the best  L2 (energy) approxima- 

t ion  i n  sn(cp) t o  p. 

03 
Definition 4.2. Suppose each of i s  a 

i=l 

l inear ly  independent set of Functions. Then ( \Tit, {wi / )  is  called 

an L2 

provided t h i s  pair used i n  the method of weighted residuals gives the 

best  L~ (energy) approximation i n  sn(cp) t o  p. 

(energy) optimal weighted residual pair with respect t o  A - -- - 

Definition 4.3. The operators A1 and A2 w i t h  the  same domain 

are strongly similar provided there is a l inea r  operator 

PA1 = A2P. 

P such that 

Definition 4.4. The operators A1 and A2 w i t h  the same domain 

are  similar provided there ex is t  continuous l inear  operators P1 and 

P2 such that Alpl = A2 and A2P2 = A1. 

Definition 4.5. A pair of l inear ly  independent sets of functions 

((Ti}, {wi} ) is an L2 (energy) almost optimal weighted residual pair - 
with respect - -  t o  A provided there is  a rider , C  such that f o r  a l l  i - 

where the norm used i n  the L2 (energy) norm. It is obvious that opti-  

mal implies almost optimal. 

Definition 4.6. Suppose (mi) is a l inear ly  independent s e t  of 
t h  

coordinate flznctions f o r  the Galerkin method and yn i s  the n 



approximate solution t o  (4.1). Let B denote the operator which maps 

the r igh t  hand side, 

be 

T 
f, t o  yn and R = A'l - B Then {qi} w i l l  

cp 
called an R-optimal Galerkin Coordinate s e t  i f  f o r  a l l  sets - 

The s e t  w i l l  be called almost R-optimal i f  there is  a posit ive number 

C such that 

where the inf  is taken over a l l  qi i n  the space. { )  
In connection with the above def ini t ion it should be pointed out 

that examination of the norm of the remainder operator could very well  

not be an indication of the smallness of 1 1  y3c - ynll since the operator 

norm i s  defined as 

and there could be some function g such tha t  

B. Fundamental Theorems 

The only previously published attempt t o  f ind  an optimal use of 

the methods considered herein i s  found in [43]. 

th i s  reference i s  t o  introduce the nonstandard energy norm. 

Definitions, ) 

The approach used i n  

(See 

This allows cer ta in  interest ing resu l t s  t o  be established. 
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In [45] the  problem (4.1) with homogeneous boundary conditions 

where A i s  a posit ive def ini te  self-adjoint operator is  investigated. 

They consider the domain of A t o  be L2, H1, and H2 respectively, 

which a re  determined by the three inner products (u, v), (Au, v) and 

(Au, Av). 

In th i s  se t t ing  the following theorems are  obtained by these 

authors. 

Theorem 4.1. The best  nth approximation i n  energy t o  the solution of 

(4.1) is given by the c l a s s i ca l  Galerkin method regardless of the co- 

ordinate system. If the  coordinate functions are complete, then the 

approximations converge i n  energy t o  the solution. 

Theorem 4.2. The s e t  {(pi} is  an R-optimal coordinate s e t  fo r  (4.1) i f  

the span of the first n elements i s  the same as the span of the first 

n eigenfunctions of the problem 

Au = hu 

with homogeneous boundary conditions. 

Theorem 4.3. 

A 

i f  A1 and A2 a re  similar. 

An almost R-optimal set for a problem defined by an operator 

is an almost R-optimal set f o r  a problem defined by an operator A2 1 

These same theorems are  a l so  proved i n  the space obtained using the 

inner product (Au, Av) . 



It i s  c l ea r  that the  optimal approximation t o  the solution p by 

a function i n  Sn((p) will be the  orthogonal projection, yn, of p onto 

sn('p)* Al-so 
0 

yje = yn + y; , (y;, 'pi) = 0, i = 1, ... n. 

i n  whatever space is being considered. 

The following r e su l t  from t h i s  Investigation i s  i n  the s p i r i t  of 

the above theorems. 

TheGrem 4.4. In the  norm induced by (Au, v) the pa i r  ({ (pi}, {.(pi } ) 
is  an optimal weighted residual  pa i r  for (4.1) f o r  any l inear ly  indepen- 

dent coordinate s e t  

Proof: We know 

That is, 

CYo, Til = CY,, (41. 

However Ayo = f and l e t t i n g  A'pi = wi gives 

which is the  weighted residual  system. Notice t h a t  the self-adjointness 

of A i s  not used. A somewhat stronger and much more useful  r e su l t  than 

Theorem 4.4 is the  following f o r  self-adjoint operators. 
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Theorem 4.5. The coordinate set 'pi is  an L2 optimal Galerkin s e t  f o r  

A 
H 

i n  (4.1) i f  and only i f  Sn((p) i s  an invariant subspace of A. 

Proof: Suppose S,((p) i s  invariant under A. Then Acp is  3 
i n  Sn((p), j 5 n and 

Since A is  se l f  adjoint t h i s  gives 

o r  

which says y is  the nth Galerkin approximation. n 

Suppose Sn((p) is not invariant under A. Then f o r  some j 5 n, 

i s  not i n  Sn('p). Then 

so that yn is  not the nth Galerkin approximation. 

Corollary: The eigenfunctions of 

Au = hu 

subject t o  homogeneous boundary conditions form an L2 optimal Galerkin 

coordinate se t .  
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Proof: S n ( q )  is invariant f o r  each n and hence Theorem 4.5 

gives the resul t .  

Theorem 4.5 is useful since i f  a set of coordinate functions have 

is  an invariant sub- been chosen, it can eas i ly  be determined i f  

space and hence i f  the Galerkin method yields the best  

Sn((p) 

L2-approximation. 

Once a set of coordinate functions is  selected the question arises,  

"Is it possible t o  choose weight functions such tha t  the pa i r  of sequences 

w i l l  form an L2-optimalweighted residual pair?" The next theorem answers 

th i s  question i n  the affirmative under most circumstances. That is, f o r  

the problem (4.1) t o  have a solution, the function 

side, must s a t i s f y  cer ta in  conditions. We w i l l  c a l l  such functions 

f, the  right-hand 

admissable. Then we have another theorem. 

03 
Theorem 4.6. Corresponding t o  any s e t  {(pi\ of l inear ly  independent 

i=l 
admissable functions which sa t i s fy  the  homogeneous boundary conditions 

03 
of functions such tha t  ( {'pi!, { w i f )  is  

i=l wil there ex is t s  a sequence 

an L2-optimal weighted residual pair. 

Proof: Le t  wi be the solution t o  Ay = qi subject t o  the homo- 

geneous boundary conditions. B i s t ence  i s  assured since qi is admissable. 

We know t h a t  (yo, (pj) = (yn, (pj) so that 

CAYn, W j )  = (Yn, A W j )  = (Yo, A W j )  = @Yo, W j )  = (f, W j ) '  

Thus (Ayn, w j )  = (f, w . )  which is the system of equations f o r  the method 

of weighted residuals. This proves (/(pi[, {wi\ ) i s  an L2-optimal weighted 

residual pair .  

J 
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Notice t h a t  if S (cp) is invariant then any basis  f o r  Sn(cp) and n 
i t s  image under A 

Also, i n  accordance w i t h  Theorem 4.5, any basis  f o r  

could be used as an optimal weighted residual pair .  

Sn(rp) is an L2 

optimal Galerkin coordinate set. 

Theorem 4.7. If A is strongly similar t o  A2 and is  an optimal 

Galerkin coordinate set with respect t o  A1 then i s  an optimal 

1 

Galerkin coordinate s e t  w i t h  respect t o  A2. 

Proof: By Theorem 4.5, Sn('p) i s  invariant under A Since 1' 

A2 i s  strongly similar t o  A1 we have 

o r  P(Sn(p)) i s  invariant under A2 and again by Theorem 4.5 any basis 

for  P(Sn(cp)) i s  an optimal Galerkin coordinate set w i t h  respect t o  A2. 

This completes the proof. 

Theorem 4.8. Suppose A1 and A2 are  s i m i l a r  and tha t  

is an optimal weighted residual pa i r  w i t h  respect t o  A1. 

is is  an optimal weighted residual p a i r  with respect t o  

Then 

A2. 

Proof: W e  have Alwi = 'pi and by s imi la r i ty  A2P2(wi) = A1(wi) = 'pi. 

Hence the r e su l t  follows. 

Theorem 4.9. Suppose A1 and A2 are similar. Then an almost optimal 

weighted residual  pa i r  with respect t o  A 

residual p a i r  w i t h  respect t o  

i s  an almost optimal weighted 1 

A2. 
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Proof: suppose ({'pi}, { wi}) are almost optimal for  A ~ .  Since 

A1 and A2 are similar 

Since 

K such tha t  

P1 is continuous and l inear  it is bounded so that there is a 

Furthermore there is  a number C such tha t  

We can take the { qi} such tha t  11 (Pill = 1. Hence 

I I A ( W i ) I I  < c + 1 

so t h a t  

and the first inequality above gives 

This completes the proof, 

An additional and very s ignif icant  r e su l t  comes from using optimal 

coordinate and weight functions. 

Theorem 4.10. 

method or an optimal p a i r  is used i n  the method of weighted residuals then 

If the optimal coordinate functions a re  used i n  the Galerkin 
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the approximate solutions converge to the exact solution. 

Proof: By optimality the approximate solutions are orthogonal 

projections of the exact solution on a sequence of monotonically in- 

creasing subspaces. Hence the approximate solutions converge to the 

exact solution. 

From this theorem it is seen that if optimal coordinate and weight 

functions exist the method will converge. 

Corollary to Theorem 4.6. If the conditions of Theorem 4.6 are 

satisfied the method of weighted residuals converges using the optimal 

pair. 

Finally, it can be remarked that when optimal functions are used 

the sequence of norms 11 yn - y"II is nonincreasing. This follows since 

each yn is the orthogonal projection Sn((p) and Sn+,(Cp) 3 Sn(q).  

C. Improving Approximations 

A description will now be given for the selection of an optimal 

weighted residual pair. 

The usual procedure in the method of weighted residuals consists 

The in selecting coordinate f'unctions first and then weight functions. 

choice of coordinate functions may be suggested by the problem but is 

usually a matter of taste. 

periodic then of course periodic coordinate functions would be chosen. 

Frequently, however, the only constraint is that they should be linearly 

independent and satisSy the homogeneous boundary conditions. 

For example, if the solution is known to be 

Once the 
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coordinate functions are selected the weight function choice is either 

based on the ease of resultant arithmetic (i.e., the computation of the 

inner products) or is completely arbitary. 

linearly independent. 

They should, of course, be 

The following is suggested for these selections and is of course 

based on the preceding theorems. Select a sequence w of linearly in- 

dependent functions that satisfy the homogeneous boundary conditions and 
i 

such that there is enough "arbitrariness" (e.g., sufficiently many arbi- 

trary constants) in each wi so that Awi can be "forced" (e.g., the 

constants chosen) to satisfy the homogeneous boundary conditions. 

It follows from Theorem 4.6 that the pair ({Ti}, {Vi>>, where 

'pi = AWi' form an optimal weighted residual pair. 

is exhibited in the examples. 

This method of choice 

Another observation in connection with the above is quite helpf'ul 

and can be used to obtain additional approximations. 

Let 

denote the nth approximate solution. "he system of equations to solve 

using {Awi} as coordinate functions and as weight functions is 

(AQ wj) = (f, wj) j = 1, ... n 

or 

2 n 
ai (A wi, w.) = (f, Wj) 

J 
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o r  

Interchanging the roles of weight and coordinate functions, now using 

n 

f o r  the approximate solution, the system t o  solve i s  

o r  

Hence we conclude tha t  the coefficient matrix t o  be inverted i n  each 

system i s  the same s o  that very l i t t l e  extra e f f o r t  i s  needed t o  deter- 
- 

mine both yn and 5; , i.e., merely the additional calculation of the n 
inner products on the right.  

Once these two approximations are known they can be used t o  give 

an additional approximation of as a l inea r  combination of 7n and 

Yn 
- - 

which involves only a 2 x 2 matrix. 

D. Computational Considerations 

I n  [43] a coordinate s e t  i s  defined t o  be numerically optimal 

provided it is  complete and the eigenvalues of the  coefficient matrix fo r  

the nth approximation i n  the Galerkin method are bounded above and below 

independent of n. 

invariant under similari ty.  

It is  then shown that  a numerically optimal s e t  i s  
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These ideas could easily be extended to the method of weighted 

residuals but have not been for two reasons. 

amples, unless some prior information is available to give insight into 

the character of the problem, a random selection of coordinate functions 

may be just as good if not better than a set obtained using the idea of 

s imilari ty 

First, as shown in the ex- 

Second, it is not reasonable to calculate eigenvalues of the co- 

efficient matrix. The motivation for this idea is simply not to have the . 

entries in the matrix get too large or too small and therefore create 

difficulties in machine calculations. This can usually be avoided by 

multiplication of each coordinate function by an appropriate constant. 

For example, if the coordinate functions were sin nfix and the inner 

products in the coefficient matrix were of order n, and hence increas- 

i skmx t ing greatly as the size of the matrix increased, by using 

as coordinate functions, this difficulty would be overcome with no 

essential change in the problem. Therefore, the general rule is to 

properly llnormalizel' the coordinate and the weight functions to prevent 

the inner 

bitrarily 

It 

product entries in the coefficient 

large or small. 

th should be pointed out that,the n 

good as the (n - 1)st approximation. That 

of the norms of the difference between the 

exact solution is not monotone decreasing. 

examples. In practice, however, where the 

there is in general no way to decide which 

matrix from becoming ar- 

approximation may not be as 

is, the sequence consisting 

nth approximation and the 

This can be observed in the 

exact solution is not known 

particular approximation is 

better. A11 that is assured, if the method employed has been shown to 

* 



converge at all, in that for sufficiently large n the nth approxi- 

mate solution can be made as close as desired in norm to the exact 

solution. 

The following computational scheme is suggested by the preceding 

section and by observation of the examples. 

Suppose several approximations have been obtained using { cp. 1 as 
1 

coordinate functions. A sequential limit for the first few coefficients 

may be guessed giving, say, an nth approximation y 

Then other approximations can be obtained using {y 

as coordinate functions. 

matrix and hence a considerable saving in machine time. 

with some certainty. n 

n, Tn+lj 'Pn+2, 0 . 0  I 
This will necessitate inverting a much smaller 



Chapter V 

A BELATEXI METHOD 

The purpose of t h i s  chapter is  t o  present a method fo r  the solu- 

t i on  of the type of problems under consideration, t o  prove that it is  an 

optimal method and t o  prove tha t  the method converges. The method is no 

more d i f f i c u l t  t o  apply than those previously considered and has several 

reasons t o  be prefered. 

Suppose throughout t h i s  chapter L is  a l inear  operator defined 

i n  8 separable Hilbert space and is  the unique solution t o  

L(u) = f (5.1) 

subject t o  homogeneous boundary conditions. 

l inear ly  independent functions which satisfy the boundary conditions. 

Let  { cpi and { Yfi 1 be se t s  of 

Furthermore, l e t  

n n 

i=l i=l 

. The function un i s  called an nth optimal approxima- pef ipi t ion 5.1 

t i on  t o  the solution of 5.1 with respect --- t o  the set { cpi I provided 

- 
--- --- 

n 

i' for  any choice of the coefficients c 

Definition 3.2. 

{ qi 1 provided tha t  if u 

proximations then 

The s e t  { 'pi 1 i s  a be t t e r  coordinate s e t  f o r  5.1 than ---- 
and v a re  the respective nth optimal ap- n n 

50 



These definitions are exactly the criteria commonly used, that 

is, we ask what function most nearly satisfies the operator equation. 

The first result is a necessary and sufficient condition for a 

function to be an optimal approximation. 

Lemma 5.1. The function un is the nth optimal approximation with re- 

spect to { rpi\ if and only if L(un) is the orthogonal projection of f 

on Sn(L((P))* 

for any choice of the 

orthogonal projection. 

cils. This is exactly the characterization of the 

Lemma 5.2. If is an orthonormal basis for Sn(L('p)) and u n is 

the nth optimal approximation with respect to { 'pi 1 then 
n 

(5 .2 )  

Proof: By Lemma 5.1, L(un) is the orthogonal projection of f 

Sn(L((p)) and truncation of the Fourier series gives the orthogonal on 

projection. 

Notice that equation '3.2 can be used to determine the approximation 

u That is, having selected the ( 9, 1 one can calculate { L('pi) 1 and find 
(say by the Gram-Schmidt process) an orthonormal basis { ii\ for Sn(L(cp)). 
n' 



Then equation 5.2 can be solved d i r ec t ly  f o r  the coeff ic ients  a i n  

u 

functions {wi/ can be used t o  give the  system 

i 

using the l i nea r  independence of /Fi1 or a s e t  of l i nea r  independent n 

for  the determination of the ai's. 

Theorem 5.1. The set  { cpi\ is a b e t t e r  coordinate set f o r  5.1 than { qiI 

provided the  orthogonal projection of f on Sn(L(rp)) i s  a b e t t e r  ap- 

proximation t o  f than the orthogonal projection of f on Sn(L($)),  

t h a t  i s  

i=l 1 

Proof: By Lemma 5.2 the  norm inequality becomes 

which gives the resu l t .  

The question of convergence of t h i s  method is  answered by the fol-  

lowing resu l t .  

corol lary t o  Lemma 1: 

t o  zero provided f i s  i n  ~m. 
The norms 1 1  L(u,) - f 1 1  converge monotonically 

Proof: Since L(u ) is  the  orthogonal projection of f on the  n 

subspaces Sn(L(cp)) 

norms converge t o  zero. 

and these increase i n  dimension it follows t h a t  the  

The monotonicty comes from the f a c t  that ,  since 
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Sn(L((P) 1 c sn+l(L(d 1 

the orthogonal projection of f on Sn+l (L(cp)) could be no worse an 

approximation t o  f than the orthogonal projection of f on Sn(L(cp)). 

To i l l u s t r a t e  the application of the method presented i n  th i s  

chapter, we consider the equation 

Ly E y” + y = -x 

which y(0) = y(1) = 0. 

boundary conditions, we se lec t  

As  coordinate f’unctions which sa t i s fy  the 

n (P-(X> = x (1 - x) n = 1, 2, .... 

To obtain an approxia t ion  i n  the form 

Y&) = alcpl(x) + a2cpJx) 

we determine an orthonormal basis {+1, F2) f o r  S2(Lcp). An acceptable 

choice i s  

We now require t h a t  

which i s  an equation involving the two unknowns a and a2. By ex- 

pressing the left-hand s ide as a l inea r  combination of F 
1 

and F2, it 1 
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is possible t o  solve d i r ec t ly  f o r  a and a2. However, i f  the inner 1 

product of each side with any two l inear ly  independent f’unctions is taken, 

two equations i n  a and a2 resul t ,  i.e., 1 

We remark that if ,  i n  particular,  w a re  chosen t o  be @ the resul t ing 

system of equations are the same as would be obtained from the method of 

weighted residuals. For our example, t o  simplify computation we se lec t  

m m’ 

w1 = 1, w2 = x. 

Then the system of equations, a f t e r  simplification becomes 

55 2a + a2 = - 1 101 

413 
a 2 = z q 7 ’  

It may be the case t h a t  the nth approximation obtained by t h i s  

method i s  not the orthogonal projection of the solution on the span of  

the first n coordinate functions. However, we have the following 

resu l t .  

Theorem 5.2. If the operator L has a bounded l inear  inverse L-’ and 

if yn i s  the nth optimal approximation t o  the solution of 

Ly = f 

then 
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Proof: We have 

ll Yn - YII 

and since 11 Lyn - f(l can be made a r b i t r a r i l y  small the result follows. 



Chapter V I  

APPLICATIONS AND EXAMPLES 

The purpose of t h i s  sect ion is  t o  apply several  of the above meth- 

ods t o  specif ic  problems i n  order t o  i l l u s t r a t e  the de t a i l s  of application, 

t o  demonstrate the  approximation accuracy, and t o  point out cer ta in  d i f -  

f i c u l t i e s  which may a r i se .  

We apply the Galerkin method and the method of weighted residuals 

t o  approximate the solutions t o  the following problems. 

I. - y" - y = x with boundary conditions y(0) = y(1) = 0 

where 

1 

111. ((1 + x ) y ' )  = x with boundary conditions y(0) = y(1) = 0 

In  each of the problems considered, the operator i s  l inear ,  s e l f -  

In  addition, the operator i n  problem I1 adjoint, and posit ive def in i te .  

i s  bounded, and hence continuous. 

We consider two complete l i nea r ly  independent s e t s  of functions 

which s a t i s f y  the boundary conditions i n  each of the  problems, 

cp,(x) = x n ( l  - x), n = 1, 2, ... 

qn(x) = s i n  ngx, n= 1, 2, ... 
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Thus, applying the  general  approximation theory of Chapter 11, we take the 

space X t o  be the completion of the subspace of L2 spanned by cp,(x), 

n = 1, 2, .... 

To determine whether or not the Galerkin method w i l l  give the bes t  

L2 

Theorem 4.5. 

approximation using a fixed s e t  of coordinate finctions,  we apply 

That is, we determine whether or not the given operator ap- 

pl ied t o  a l i nea r  combination o f  the first n coordinate functions gives 

an element which can a l so  be wri t ten as sgch a l i nea r  combination. If the 

Galerkin method does not give the best  approximation, applying Theorem 4.6, 

we determine a second l inear ly  independ set of functions, 

n = 1, 2, ..., t o  be used as weight functions in the  method of weighted 

wn(x), 

residuals which w i l l  give the best  approximation. 

In each of t he  following examples, we f ind eight approximations, the 

th i rd  through the tenth.  The nth approximation t o  the solution of Ay = f 

is given by 

We then evaluate the  nth approximation a t  each of  the points xi = O . l ( i  - 1), 

i = 1, ..., 10 

Finally, since the  exact solution y i s  known, we are able t o  evaluate the 

and compare these w i t h  the  exact solution a t  each point. 

norm of the difference of the exact and approximate solutions.  

The three norms considered are defined as follows. 



The L2-norm is  

1 
2 
- 

I I Y  - Yn(I = (Y - Yn' Y - Yn) 
L 

The A-norm i s  

2 
1I.Y - YnII = (AY - Yn3 Y - Yn) 

i .e.,  the energy norm. 

The sup-norm i s  

In example 1, we use the Galerkin method t o  solve Problem I. W e  

res ta te  the problem equivalently as 

y" + y = -x with boundary conditions y(0) = y(1) = 0 

A s  coordinate functions which sa t i s fy  the boundary conditions, we 

se lec t  

qn(x) = xn(l - x), n = 1, 2, .... 
Thus 

Applying the Galerkin method, we seek a jth approximation i n  the 

form 

n=l 
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where the j unknowns a n = 1, . . , j a re  determined from the fo l -  

lowing system of j equations 

n’ 

where 

1 
(-X, = - -7 

The exact solution t o  Problem 1 is 
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In Example 2, we use the  method of weighted residuals t o  solve 

Problem I. 

As coordinate functions which satisfy the  boundary conditions, 

again we se lec t  

~ ~ ( x )  = x n ( l  - x) ,  n = 1, 2, .... 
A s  weight functions which w i l l  give the best approximations, w e  

solve 

which gives 

where 

n+2 
k- 1 cos x +c cn x 

k k=l 1 ‘n w = A  s i n x -  n n 

n+2 

cos 1 -c Cn,) 

k=l  

= 1 and - 
n(n 2) - -” ‘n(N+l) C 

Applying the  method of weighted residuals, we seek a jth approxi- 

mation i n  the  form 

n=l 
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where the j unknowns an, n = 1, ..., j are determined from the fol- 

lowing system of j equations 

where 

m+2 Cm m+2 
- + c  k+l 9 sin 1 

k=l  k=l 
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In Exapple  3,  we use the method of  weighted residuals t o  solve 

Problem 1. 

As  coordinate functions which satisfy the boundary conditions, 

again we se lec t  

cp,(x) = xn(l-x), n = 1, 2, .... 
A s  weight functions, we  use 

wn(x) = s i n  mx, n = 1, 2, ... 

Applying the method of weighted residuals, we seek a jth approxi- 

mation i n  the  form 

3 
Y j ( d  =c ancpn(x) 

n=l  

where the  j unknowns a n = 1, ..., j a re  determined from the f o l -  n’ 
lowing system of j equations 

where 
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In  Example 4, we use the Galerkin method t o  solve Problem 1. 

As coordinate functions which satisfy the boundary conditions, we 

se lec t  

cp,(x) = s i n  MX, n = 1, 2, .... 

Thus 

Applying the Galerkin method, we seek a jth approximation i n  the 

form 

n=l  

where the j unknowns a n = 1, ..., j a re  determined from the fol- 

lowing system of j equations 

ny 

n=l  

where 



Thus 

2( -qn 
mc1 - (m,21 

a =  

and 

j 
s i n  m. -1)” 

n=1 
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In  Example 5,  we use the method of weighted residuals t o  solve 

Problem I. 

A s  coordinate functions which satisfy the boundary conditions, we 

s e l ec t  

cp,(x) = s i n  mx, n = I, 2, ..., 

and as weight functions, we use 

Applying the method of weighted residuals, we seek a jth approxi- 

mation i n  the form 

j 

yj (x)  =E an(~qn, wm) = (-x, wm) m = 1, ..., j 

n=l  

where 

1 (-x, wm) = (-1lrn. 



0 
0 

6 

c 

In 

a, 0 t - 
e 

d d  
I 8  

0 

0 0 

0 0 

0 

i 
52 
0 

2 
0 N 

I 

.o 

m w 
L 
"f 

n 
5 0 

-2 
c 

m 
0 Y) 

st ... 
0 

m 
m 

H ... 
r- 

A 
G 
0 

c 

m I.. 

.- N 

+ b 
a 
c- -. 
0 

5. 

0 c 
?- 

I c o w  
4 P Z  

I 

0 

0 
0 
0 0 

0 

5 
8 
0 

m 
5 z 
0 

0 

0 
0 N 

0 
ic 

0 .. r- 
c 0 

c 

E m 
0 
1 

0 
0 

E 
c 

n 

r- r- 
b 

s 
c 

N 

0 
n 

z 
0 

0 

c 
0 0 

r- m 

m 
- 

- 
0 + 
m n 
4 0 

* 

E 
e 

0 N o r- 1 0 0  I 8  

0 0 -  0 1 0  

m 
0 

c; 

d 
c - 

m 
0 

f 
r- 
I 

N 0 

H 
n: e 

c 
0 
I 
0 m 
0 0 

I 
c 

c 
0 

z 
8 
N 

. . .  . . . . . . . . . . .  m N c- I 

2 
c- 

B 
3 

N 0 

m 
m 
c 

"! 
7 

m 0 

r- 
c 
2 0 

0 0 

0 0 

0 

3 z 
0 

m 
a r- 
N 0 0 

r' 
0 r- 

0 
f 

m 
c 0 

F 
0 

f 0 

2 
s1 
Y) 

.* 

1 e '. m " 
r- 



To conclude the analysis of Froblem I, w e  compare the resu l t s  of 

Examples 1 through 5.  

A comparison of the first three examples using as coordinate 

tha t  i n  most cases, the approximations are  not much, i f  any, be t t e r  

functions 

shows that the 

ample where an 

cp,(.) = xn(l-x), n = 1, 2, ... 
Galerkin method gives good resu l t s .  In  the second ex- 

optimal weighted residual pa i r  is  used, it can be seen 

than those obtained by the Galerkin methcd. 

Galerkin method apparently gives a be t t e r  approximation, the discrepancy 

is  a t t r ibu ted  t o  the inaccuracy of numerical evaluation of the inner pro- 

duct expressions i n  the optimal weighted residual pa i r  case and t o  the 

e r ror  produced i n  the  numerical evaluation of the integrals  defining the 

In those cases where the 

respective norms. 

quence o f  norms { 1 1  y 

i n  t h i s  example. 

t ha t  the optimal weighted residual pair gives the best  approximation us- 

ing t h i s  s e t  of coordinate functions. 

This i s  substantiated by Theorem 4.10 since the se- 

- yo 1 1  1 i s  non-increasing which is  not reflected n 

A comparison of examples 2 and 3 shows more clear ly  

In  general, the problem of solving Aw = 'pn to  obtain an n 
optimal weighted residual pa i r  i s  as d i f f i c u l t  as solving the or ig ina l  

problem Ay = f .  In  Problem I, i n  particular,  a f t e r  obtaining the optimal 

weight functions, it w a s  found tha t  these functions w e r e  very close t o  

being orthogonal t o  the  right-hand s ide of the or ig ina l  equation. By 



examination of the inner-product expression 

tha t  as n increases, we have (f, wn) represented as the sum of three 

increasingly large factors  t o  produce a term which tends t o  zero. 

t o  obtain the accuracy required, it w a s  necessary t o  evaluate (f, w ) 

using double precision arithmetic. 

(f, wn) , it can be seen 

Thus 

n 

In summary, we conclude tha t  although the Galerkin method did not 

give the orthogonal projection of the solution on the span of the first 

n coordinate functions 

finfiing such a projection did not warrant the increased ef for t .  

cp,(x) = xn(l-x), the increased d i f f i cu l ty  of 

In Ekamples 4 and 5 coordinate functions 

cp,(x) = s i n  nzx, n = 1, 2, ... 

were used. In t h i s  case 

which shows tha t  the Galerkin method gives the orthogonal projection 

since, as i n  Theorem 4.5, the span of the first 

is  invariant under the operator A. 

proximation using the Galerkin method i n  &ample 4 is much be t t e r  than 

the corresponding approximation obtained by the method of weighted re- 

n coordinate functions 

Thus, as we would expect, the nth ap- 

siduals i n  &ample 5. 

A s  a f i n a l  comparison we note tha t  i n  Examples 2 and 4 orthogonal 

projections on the spans of the respective first 

a re  obtained i n  each case. 

n coordinate f'unctions 

However, each approximation i n  Example 2 i s  
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b e t t e r  than t h e  corresponding approximation i n  &ample 4. 

approximation i n  &ample 1, which is  not the  orthogonal projection, is 

a l so  b e t t e r  than the  corresponding approximation i n  Exanrple 4. 

dicates  t ha t  the coordinate functions cp,(x) = xn(l-x), n = I, 2, ... 
are a better s e t  fo r  Problem I than 

Although no c r i t e r i a  for  the select ion of  a best  set of coordinate func- 

t ions is given, we remark that  any addi t ional  information about the prob- 

lem such as physical character is t ics ,  per iodici ty  of the solution, e tc . ,  

a re  helpful i n  determining an optimal s e t  of coordinate functions. In 

the case of Problem I, we speculate, for  example, that coordinate func- 

t ions cpn(x) = x"(1-x) 

since the right-hand s ide of the  equation, 

I n  fact ,  each 

This in- 

cpn(x) = s i n  mx, n = 1, 2, .... 

give a b e t t e r  approximation than cpn(x) = s i n  m x  

-x, is  cer ta in ly  not periodic. 

I n  Example 6, we use the  Galerkin method t o  solve Problem 11. 

A s  coordinate functions we se l ec t  

qn(x) = xn(l-x), n = 1, 2, .... 
Thus 

- 2x - -  
(n+l)(n+2)(n+j) 

Applying the Galerkin method, 

i 

we seek a jth approximation in  the form 

n=l 
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where the  j uriknowns an, n = 1, . . ., j a re  determined from the fo l -  

lowing system of j equations 

where 

By means of Green’s function, the boundary value problem, Problem I, 

can be transformed t o  the  in tegra l  equation of problem 11. 

t i o n  t o  Problem I1 is  a l so  

Thus the solu- 

s i n  x 
sin 1 y(x) = - - x. 

We observe here that, t o  within the accuracy of numerical methods, 

the nth approximation obtained by solving Problem I1 is the same as the 

corresponding approximation obtained by solving Problem I (Example 1). 

This fac t  i s  b e t t e r  i l l u s t r a t e d  by considering the coordinate functions 

‘gn(x) = s i n  mx, n = 1, 2, .... 
Applying the Galerkin method, we seek a jth approximation i n  the form 

n=l 
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where the j unknowns a n = 1, ..., j are determined from the fol- 
lowing system of j equations 

n' 

n=l  

where 

= l o  i f m f n  

Thus 

which is the same as the result obtained in Ekample 4. 

We conclude that all observations made concerning the operator and 

approximate method of determining a solution to Problem I are equally 

valid in determining a solution to Problem 11. 
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In Example 7, we use the Galerkin method t o  solve Problem 111. 

As coordinate fbnctions which sa t i s fy  the boundary conditions, we 

select  

Applying the  Chlerkin method, we seek a jth approximation i n  the form 

n=l  

where the j unknowns an, n=l, . . . , j a re  determined from the follow- 

ing system of j equations 

where 

- - - -  Inn + (  mn + m + n)  - 
m+n-l 

- (m + l)(n + 1) 
m+n+2 m+n m+n+l 

The exact solution to Problem I11 is 
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In &ample 8, w e  use the  Galerkin method t o  solve Problem 111. 

A s  coordinate functions which s a t i s f y  the  boundary conditions, we 

s e l ec t  

cpn(x) = s i n  mx, n = 1, 2, .... 
Applying the Galerkin method, we seek a jth approximation i n  the form 

j 

n=l  

where the  j unknowns an, n = 1, ..., j a re  determined from the fo l -  

lowing system of j equations 

n=l  

where 
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In Example 9 we use the method of weighted residuals to solve 

Problem 111. 

As coordinate finctions which satisfy the boundary conditions, we 

select 

cp,(x) = xn(l - x), n = 1, 2, .... 

It can be shown that the operator in Problem 111, A1y = ((1 + 4Y1)' 

is similar (Definition 4.5) to the operator A 9  = y". For weight func- . 

tions, we solve 

A2Wn = 'pyl n = 1, 2, ... 

to obtain 

Thus, applying Theorem 4.9, since 

sidual pair with respect to the operator 

g, is an optimal weighted re- { n' wnr, - 

optimal weighted residual pair with respect to the operator A1. 

Applying the method of weighted residuals, we seek a jth approxi- 

mation in the form 

where the j unknowns, a n = 1, . . ., j are determined from the foL-  

lowing system of j equations 
n' 



a2 

2 an(Aqn, wm) = (-x, wm) m = 1, ..., j 
n=l  

where 

n ( m + ( m n + n + m + 2 )  
m+n+2 m+n+l 

1 
(ATn, wm) = ( m+l)(m+2)(m+3) 

imn + 2n + 1) 
+ - 

m+n+3 
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A comparison of the  r e su l t s  i n  Ekamples 7 and 9 shows tha t  i n  a l l  

of the norms considered, t he  Galerkin method gives b e t t e r  approximations 

than the method of weighted residuals using an almost optimal weighted 

residual  pa i r .  

bes t  approximation method, unless a p r i o r i  information is available, the 

Galerkin method w i l l  give r e l a t ive ly  good resu l t s .  

Thus we are lead to conclude t h a t  i n  select ion of the 

To i l l u s t r a t e  the use of the Galerkin method f o r  p a r t i a l  differ- 

e n t i a l  equations, we consider the problem 

IV. +u+x.$=:  2 + 2 y  2 + 2 x y  2 2  - 2 x y - x y  2 2 + x y - : - 2 y  

w i t h  boundary conditions 

u(x, 0) = u(x, 1) = u(0, y )  = u(1, y )  = 0. 

A s  coordinate f inct ions which s a t i s f y  the boundary conditions, w e  

se lec t  

rpn(x) = s i n  prx s i n  qcy 

where the  correspondence o f  p and q t o  n is  given by 

p+x cos pax s i n  qcy. 1 



E35 

Applying the  Galerkin method, we seek a jth approximation i n  the 

form 

n=l 

where the j unknowns a n = 1, ..., j are determined from the fol-  

lowing system of  j equations 
n' 

n= l  

where 

cp,(x) = s i n  m x  s i n  scy, 

f i s  the right-hand s ide of  equation I V  and i f  

where 

A ( r )  = - - rc 1 + [-& - ."i] [(-l)r - 11 

~ ( r )  = - [ (-1)r - 11 . 
(m l 3  

The solution t o  Problem I V  is  

4 x 7  Y >  = X Y ( l  - x ) ( l  - Y). 
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We remark that this  problem w a s  considered by Mihklin [38].  He 

applied the Galerkin method as we have done, however, h i s  resu l t s  a r e  

incorrect due t o  sign errors  i n  h is  calculations of (Acp ny 'pm ) and 

(f, ( P J .  
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A s  a f i n a l  example w e  consider t h e  appl icat ion of the Galerkin 

method t o  the  i n i t i a l  value problem 

V. y" + xy = 1 with i n i t i a l  conditions y(0) = y'(0) = 0. 

I n  attempting t o  apply the  Galerkin method, we are immediately 

faced with two problems. 

The f irst  problem arises i n  the  select ion of coordinate functions 

It i s  not d i f f i c u l t  t o  s a t i s f y  the which s a t i s f y  the  i n i t i a l  condition. 

i n i t i a l  conditions, f o r  

. 

n+l  cp,(x) = x , n = I, 2, ... 

i s  one such set. However, the set  

cp,(x) = P+'(R - x),  n = 1, 2, ... 
for any real number R, a lso  s a t i s f i e s  the i n i t i a l  conditions. Thus, by 

an appropriate choice of  

vanish a t  any desired point. 

R, we are able t o  force our approximations t o  

Assuming an appropriate s e t  of coordinate functions has been se- 

lected, the  second problem arises i n  the  calculation o f  inner products. 

Since 

we must have some f i n i t e  in te rva l  [a, b] over which the integrat ion i s  

t o  be performed. We solve t h i s  problem by assuming tha t  an approximate 
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solution is  desired only f o r  cer ta in  values of the independent variable. 

Thus we may assign t o  

i n  which we are interested.  In  [A], Ames suggests t h a t  b be chosen 

as some point a t  which steady-state is achieved (see discussion i n  

Chapter 111). We point out, however, that this i s  not always possible. 

In Problem V, i n  particular,  noting that the solution i s  

b, any value such that [a, b] contains a l l  value 

steady-state i s  never achieved; i n  fact ,  the  solution becomes increas- 

ingly unstable as x increases. 

We conclude that fo r  Problem V the Galerkin method and the method 

of weighted residuals a r e  not applicable unless a second zero of the func- 

t i o n  y is  known, i n  which case, we approximate the solution as shown i n  

the f irst  three boundary value problems. 



Chapter VI1 

THE NONLINEAR CASE 

The methods under consideration can, i n  principle,  be applied' t o  

nonlinear problems as noted i n  Chapter 111. However, there  are a t  least 

two d i f f i c u l t i e s  involved. 

minor, i s  the fack t h a t  the system of equations obtained fo r  the  co- 

F i rs t ,  and less serious although by no means 

e f f i c i en t s  is  nonlinear. Hence it may be an impossible task  t o  solve 

them. Second, there are no known convergence proofs for  t h i s  c lass  o f  

problems. 

The above drawbacks have not prevented the use of a method. The 

f irst  has been overcome by the use of very f e w  terms and the second has 

been ignored. Authors invariably claim "good1' resu l t s .  

The following is  a summary of the use of Galerkin's method in  a 

nonlinear s i tuat ion.  

Cesari [ 3 3 ] ,  i n  a very elegant paper, uses a Galerkin approach t o  

give an existence proof for a solution t o  cer ta in  nonlinear equations. 

A s  an example he analyzes the problem 

x 1 ' + x + a x 3 = p t ,  o <  - t < l  - 

with boundary conditions 

x(0)  = 0, x'(1) + hX(1) = 0 

where a, p and h are nunibers. 

Following i n  t h i s  direct ion Urabe E421 considers the  nonlinear 

periodic equation 

90 



dx 
d t  - = x(x, t )  

where x and X(x, t )  a re  vectors of the same dimension and X(x, t )  is 

periodic of period 23r i n  t. In part icular  he proves the following 

theorem. 

., Theorem: The existence of an isolated periodic solution, 2, of (7.1) 

implies the existence of Galerkin approximations x for  suf f ic ien t ly  

large m. The existence of Galerkin approximations x f o r  suff ic ient ly  

m 

m 

large 

boundedness condition holds. 

m implies the existence of an exact solution provided a cer ta in  

In a l a t e r  publication Urabe [44] compares his  e a r l i e r  technique 

with a method of averaging when X(x, t )  = hy(x, t )  where h is a small 

parameter. A somewhat more detai led numerical analysis is given i n  [43]. 

Locker [ 30 ]  generalizes the work of Cesari t o  give an existence 

analysis of 

k = N X  

where L is  an unbounded l inear  operator and N i s  a nonlinear operator. 

When L is self-adjoint his  resu l t s  reduce t o  Cesari 's. He also gives a 

simple example. 

There i s  one other recent reference which mentions Galerkin's 

method i n  connection with nonlinear problems. 

method for  replacing a nonlinear problem by a l i nea r  one. A s  an alterna- 

t i ve  t o  the main point of h i s  paper, he b r i e f ly  indicates t h a t  a one term 

Galerkin approximation could be used t o  implement h i s  method. 

Bellman [32 ]  considers a 



In sunnnary, there have been two uses of Galerkin's method on 

nonlinear problems. F i rs t ,  as indicated above, a few existence resu l t s  

have been obtained fo r  cer ta in  problems by employing a Galerkin approach. 

Second, and a t  the  other extreme, the method has been applied without 

regard t o  convergence. 

To i l l u s t r a t e  some of the d i f f i c u l t i e s  which arise is  attempting 

t o  apply the Galerkin method o r  method of weighted residuals t o  non- 

l inear  equations, we consider the following d i f f e ren t i a l  equation. 

(Y')~ + n2y2 = K~ with boundary conditions y(0) = y(1)  = 0 

We note first that y(x) = s i n  KX i s  a solution t o  the equation, 

but t ha t  it i s  not unique, for  y(x) = -sin 7cx i s  also a solution. 

In applying the method of weighted residuals, as coordinate func- 

t ions  which sa t i s fy  the boundary conditions, we se lec t  

cp,(x) = X"(l - X I ,  n = 1, 2, ... 

and as weight functions, we use 

n- 1 w (x) = x , n n = 1, 2, .... 

We seek a jth approximation i n  the form 

j 

where the j unknowns a n = 1, . . ., j a re  determined from the  fol-  

lowing system of j equations 

d 
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(7.2) 

Thus we obtain a system of non-linear equations which may be d i f f i c u l t  or 

impossible t o  solve. 

To i l l u s t r a t e ,  consider the case where j = 2. The system of 

equations (7.2) becomes 

+ 10 71x2 + 14 2 2  ( 'Ic 30 ) - (" ;?) "la2 +( 105 ) "2 = ' 

2 (G) + 10 a: - (2w2 - 4 9 )  a a +(  485f2 840 + 84 > a  2 =  
210 1 2  2 2  

Solving t h i s  system, assuming a2 # 0, we obtain 

2 
a 2 =  7t 

[~(Tc'  + 10) - 7(a2 - 10) k + 2 ( 7 1 ~ ~ ~  + 14) k 

2 ( 5 h 2  - 28) a = kal, where k = 
2 2oLc2 + 28 

T h l  s, i n  seeking a two-term approximation, w e  f ind ti possible solutions. 

Continuing i n  t h i s  manner, it can be seen tha t  as the number of terms i n  

the approximation increases, the  number of possible solutions t o  the sys- 

tem of equations (7.2) a lso increases. 

p r io r i  information regarding the solution of a non-linear problem, a purely 

a rb i t ra ry  choice among the possible solutions may not give a desirable 

approximation. 

It i s  apparent t h a t  without a 



Chapter VI11 

APPLICATIONS AND ANcIl;YSES OF ME;THODS OF THE 

GALEXKIN TYPE AVAILABLE IN THE LITERATURE 

This chapter consists of a rather complete representative cross 

section of references to the methods under consideration. Following 

each reference is a remark to indicate how the article uses a method. 

Some insight into typical applications, frequence of use and care in 

application can be gained from these references. 

The list does not include many of the very brief references to 

one or more of the various methods. A reference is included only in 

case there is a fairly complete discussion of a method or a nontrivial 

application. 

plication. Convergence proofs or justification for use almost never 

occur. 

Inclusion of a reference is not an endorsement of the ap- 

The references are grouped by (A) Ordinary Differential Equa- 

tions, (B) Partial Differential Equations and (C) Studies of Methods 

per se. 

A. Ordinary Differential Equations 

1. Birikh, "On the spectrum of small perturbations of plane-parallel 

Couette flow", (PMM) Journal - of Applied Mathematics - and 

Mechanics, Vol. 29, 1965, 946-949. 
- 

94 
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Solves a fourth order ordinary d i f f e ren t i a l  equation subject 

t o  homogeneous boundary conditions using the coordinate functions 

1 cash ax cos 4 T X -  
n cosh a 

cos 4- [ Vn = K 

f o r  even n and the  same funtions with sinh and s i n  replacing 

cosh and cos, respectively, for  odd n. The same problem i s  

solved i n  [g] using d i f fe ren t  coordinate functions. 

2 .  Bruslinskaja, " L i m i t  cycles for equations of motion of a r ig id  body 

and Galerkin equations for  hydrodynamics", Soviet Mathematics , 
Vol. 5, Aug. 1964, 1051-1054. 

Solves a f i rs t  order system of three equations with l i t t l e  

comment. 

3. Chandraskhar, "Hydrodynamic and hydromagnetic s tab i l i ty" ,  Clarendon 

Press, Oxford, England. 

Solves the system 

2 
( D ~  - a2) u = (1 + ax) v 

2 ( 0 2 -  a )  v = - x u  

subject t o  u = Du = v = 0 for  x = 0, 1 using as coordinate 

functions v = s i n  nlrx and u the solutions of n n 

2 (n2 - a ) un = (1 -+ ax) s i n  nlrx 

u =Du  = O f o r x = 0 , 1  n n 

and using s i n  nlrx as weight functions. 



4. DiPrima, "Applications of Galerkins method t o  a problem i n  hydro- 

dynamic s t ab i l i t y , "  Quarterly - of Applied Mathematics, Vol. 13, 

1, 1955, 55-62. 
nx Solves a problem similar t o  t h a t  i n  [3] using e times a 

polynomial as coordinate functions. 

5. DiPrima, Walowit, Tsao, "Stabi l i ty  of flow between a rb i t r a r i l y  

spaced concentric cyl indrical  surfaces including the e f fec t  of 

a r ad ia l  temperature gradient," Journal - of Applied Mechanics, 

V O ~ .  31, 1964, 585-593. 

Solves a 2 x 2 homogeneous system of ordinary d i f f e ren t i a l  

equations with homogeneous boundary conditions using 

(x2 - +)2 X n-1 

Shows no work. 

as coordinate functions fo r  both unknowns. 

6. DiPrima, "Some variat ional  principles fo r  problems i n  hydrodynamic 

and hydromagnetic s tab i l i ty" ,  Quarterly - of Applied Mathematics , 
VOL 18, 1961, 375-385. 

Mentions the application of the  Galerkin method t o  a problem 

similar t o  [3]. He uses cosines as one s e t  of coordinate func- 

t ions and those of [lo] for  the other.  

7. Duncan, "Torsional osc i l la t ion  of a cantilever when the s t i f fnes s  

i s  of composite origin," TR Aero Research Commission, Great 

Bri t ian A i r  Ministry, Part  1, 1937, 1809, 471-483. 

Solves a second order ordinary d i f f e ren t i a l  equation with 

homogeneous boundary conditions using polynomials as coordinate 

functions. 
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8. Frazer, Jones and Shan, "Approximation t o  functions and the  solution 

of d i f f e r e n t i a l  equations", TR Aereo Research Commission, Great 

Br i t ian  A i r  Ministry, Vol. 1, 1937, 1799, 517-549. 

Solves ordinary d i f f e r e n t i a  equations of order less than 

- four using cer ta in  polynomials as coordinate functions. 

9. Gallagher and Mercer, "On the behavior of small disturbances i n  

plane couette flow", Jourhal of Fluid Mechanics, Vol. 13, 1962, -- 
91- 100. 

Solves a fourth order equation with homogeneous boundary 

conditions using coordinate functions similar t o  those i n  [lo]. 

10. Harris and Reid, "On orthogonaL functions which s a t i s f y  four boundary 

conditions - Tables", Astrophysical Journal Supplement, Vol. 3, 

1958 , 429- 452. 
An orthogonal sequence o f  functions i s  presented which 

s a t i s f y  

(3) 1 y = ay, y = y = 0 a t  x = 2  0.5 

cosh X x cos X x m - m c (x) = m cosh $ A  cos $ A  m m 

sir ihp x s i n p  x m 
s i n  $ F  

- m 
Sm(X) = sinh $ p  m m 

where A m  and p are  the posi t ive roots of m 
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11. Krueger and DiPrima, "The s t a b i l i t y  of a viscous f lu id  between ro- 

t a t i ng  cylinders with ax ia l  flowtt, Journal of Fluid Mechanics, -- 
V O ~ .  19, 1964, 528-538. 

Solves a complex eigenvalue problem fo r  a 2 x 2 system using 

Galerkins method with the coordinate functions of [lo]. 

12. Kurzweg, "Magnetohydrodynamic s t a b i l i t y  of curved viscous flows", 

TRII-29, Princeton University, Department of Physics, 1961. 

Applies the Galerkin method t o  three simultaneous fourth or- 

der l i nea r  ordinary d i f f e ren t i a l  equations with homogeneous 

boundary conditions using polynomial coordinate functions. 

13. Penzes and Burgin, "Free vibrations of t h in  isotropic  oblate- 

spheroidal shells",  General Dynamics/Convair, San Diego, Cal i f .  

Solves a second order homogeneous ordinary l inear  differen- 

t i a l  equation with variable coefficients using associated 

Legerdre functions with the Galerkin method where the con- 

s t r a i n t s  are tha t  the solution be s ingle  valued and bounded. 

14. Rao, "The f'undamental flexural vibrations of a cantilever beam of 

rectangular cross section w i t h  uniform taper", Aeronautical 

Quarterly, May 1965, V o l .  16, 139-144. 

Applies Galerkin method t o  a fourth order ordinary equation 

w i t h  homogeneous boundary conditions. 

15. Sastry, "Influence of w a l l  conductance on the s t a b i l i t y  of Hartmann 

flow i n  a curved channel", Physical Society of Japan Journal, 

V o l .  21, 6, June 1966. 

- 
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Applies Galerkin method t o  an eigenvalue problem involving 

a fourth order d i f f e r e n t i a l  equation. 

16. Sennet and Wait, "Analog computer analysis of static beams", AICE, 

Engineering Mechanics Division Journal, V o l .  91, Apri l  (I) 

1965, 47-62. 

Compares a Galerkin solution t o  an analog computer solution 

of a fourth order equation and finds the Galerkin solution with- 

i n  3% of the other.  

17. Smith, "On the growth o f  Taylor-Garther vort ices  along highly con- 

cave walls", Quarterly - of Applied Mathematics, V o l .  13, 1955, 

233- 262. 

Applies Galerkin method t o  two simultaneous ordinary d i f -  

f e r en t i a l  equations, one of t h i r d  order and one of fourth, w i t h  

homogeneous boundary conditions using e-an times polynomials as 

coordinate functions. 

B. P a r t i a l  Di f fe ren t ia l  Equations 

18. Bickley, "Experiments i n  approximating solutions of a p a r t i a l  d i f -  

f e r en t i a l  equation", Philosophical Magazine, (7) 32, 1941, 50-56. 

Solves the one dimensional wave equation wi th  cer ta in  bound- 

ary and i n i t i a l  conditions using h is  modification of the Galerkin 

method, collocation and l e a s t  squares obtaining one and two term 

approximations. 
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19. Biezeno, G r a m m i l ,  Blackie, "Theory of Elas t ic i ty"  , Engineering 

DJIXUK~CS, VO~. 1, 170-176. 
4 Applies Galerkin method t o  V u = f with homogeneous s ide 

conditions. 

"L 20. Bolotin, "Nonconservative Problems -- of the  Theory - of Elas t i c  - Sta- 

b i l i t y" ,  1963, pp. 58-62, 108-109, 207-212, 247-265. 

Makes several  applications of the Galerkin method. 

21. Cheng and Pan, "Stabi l i ty  analysis of gas lubricated,  self-acting, 

plain,  cyl indrical  journal bearings of f i n i t e  length using 

Galerkins method" , Journal of Basic Engineering, Vol. 87, 1965, -- 
185- igi . 

Applies Galerkin method t o  a second order equation with 

homogeneous boundary conditions using cosines as coordinate 

functions. 

22. Grandall, Engineering Analysis, McGraw-Hill, 1956, pp. 149, 233, 372. 

Gives example t o  i l l u s t r a t e  the method described herein on 

page 25. 

23. Duncan, "Applications of the  Galerkin method t o  the tors ion and 

flexure of cylinders and prisims", Philosophical Magazine , 
Series  7, V o l .  25, 1938, pp. 634-649. 

Applies Galerkin method t o  several  examples of Poissons 

equation with polynomials as coordinate functions. 
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24. Finlayson and Scriven, "The method of weighted residuals and i t s  

re la t ion  t o  cer ta in  var ia t iona l  principles for  the  analysis 

of transport  processes", Chemical Engineering Sciences, Vol. 20, 

1965, pp. 305-404. 

Discusses t h e  method of weighted residuals and works a few 

examples. 

25. Kaplan, "Some new methods of flux synthesis", Nuclear Science and - 
Engineering, Vol. 13, 1962, pp. 22-31. 

Applies Galerkin and re la ted  methods t o  diffusion equations 

subject t o  continuous f lux  and current and homogeneous boundary 

conditions. 

26. Karnagnti, "The c r i t i c a l  Reynold's number for the flow past  a 

sphere", Journal of the Physical Societg of Japan, V o l .  10, 

1955, PP. 694-699. 

-- - 

Uses method of weighted residuals to solve nonlinear fourth 

order p a r t i a l  d i f f e r e n t i a l  equation with nonhomogeneous boundary 

conditions using sines as coordinate functions and Legendre func- 

t ions as weight functions. 

27. Nemat-Nasser, Prasad, Henmann, "Destabalizing e f fec t  of velocity 

dependent forces i n  nonconservative continuous systems", AIAA 

Journal, V o l .  4, 7, July 1966, pp. 1276-1280. 

Compares an exact solution of a fourth order p a r t i a l  differ-  

e n t i a l  equation t o  a two term Galerkin approximation. 
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28. Snyder and Stewart, "Velocity and pressure prof i les  f o r  newtonian 

creeping flow i n  regular packed beds of spheres", AICLE Journal, 

VOL 12, 1966, pp. 167-173. 

Applies Galerkin method to a homogeneous system of l i nea r  

p a r t i a l  d i f f e ren t i a l  equations with nonhomogeneous boundary 

conditions using s ines  and cosines as coordinate functions. 

29. Snyder, Spriggs and Stewart, "Solutions of the equations of change 

by Galerkins method", AICLE Journal, 10, 1964, pp. 535-539. 

Has discussion o f  methods i n  general with no proof of h i s  

recommendations. Uses Galerkin method on nonlinear p a r t i a l  

d i f f e ren t i a l  equation example with known solution t o  conclude 

r e su l t s  are good. 

30. TOOS, "The Galerkin's vector for  the dynamic problems of an e l a s t i c  

isotropic  and nonhomogeneous body", Revue Romaine de Mathe- 

matique %res e t  Appliques, Vol. 10, 6, pp. 855-861. 

-- 

Applies the Galerkin method t o  a fourth order l i nea r  non- 

homogeneous p a r t i a l  d i f f e ren t i a l  equation. 

6 .  Method Studies 

31. Ames, "Nonlinear p a r t i a l  d i f f e ren t i a l  equations i n  engineering", 

Mathematics - i n  Science - and Engineering, V o l .  18, Academic Press, 

1965, pp. 243-270. 

Discusses several  var ia t ions of the method of weighted re- 

siduals.  Covered herein on page 24. 



32. Bellman and Richardson, "Linearization based 

imation and Galerkins method", Quakterlx 

V o l .  24, April 1966. 
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on differential approx- 

- of Applied Mathematics, 

Uses a one term approximation to help in gaining informa- 

tion to approximate a nonlinear equation in a very brief ex- 

ample. 

33. Cesari, "Functional analysis and Galerkins method", Michigan 

Mathematical Journal, Vol. 11, 1964, pp. 385-414. 

See page 90 of this report. 

34. Crandall, Engineering Analysis , McGraw-Hill, 1956. 
Discusses Galerkin method and applies to very simple ex- 

amples. 

35. Duncan, "The principles of the Galerkin method", TR Aeronautical 

Research Commission, Great Britian Air Ministry, VoP. 2, 1848, 

1938, pp. 589-612. 

Applies the Galerkin method to several problems quite 

similar to [TI. 

36. Finlayson and Scriven, "The method of weighted residuals - a review", 
Applied Mechanics Reviews, V o l .  19, 9, Sept. 1966, pp. 735-747. 

Outlines the relation between Galerkins method and varia- 

tional methods. 

37. Kantorivich and Krylov, Approximate Methods _. of Higher Analysis, 

Wiley and Sons, 1964, pp. 258-304. 
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Gives good discussion of several  approximate methods and 

solves several examples. 

38. Mikhlin, Variational Methods - i n  Mathematical Physics, Pergamon 

Press, 1964. 

Discusses Galerkin methods and proves several convergence 

theorems s ta ted herein. 

39. Milne, Numerical Solution c of Different ia l  Equations, Wiley and Sons, 

1953, pp. U4-116. 

Describes the Galerkin method for  nonhomogeneous boundary 

conditions. 

40. Reiss, "Varia.tiona1 and related methods", bound as supplement t o  

Problems _I of Mathematical. Physics by Lebeder, Prentice Hall, 

1965, pp. 404-407. 

Explains several variations of  the Galerkin method with 

suggestions but offers no proof. See Chapter 111. 

41. Shulesko, "A new method of solving boundasy value problems of mathe- 

matical physics", Australian Journal of Applied Science, Vol. 10, 

1959, PP. 1-7. 

For a discussion of h i s  suggestion see page 23. 

42. Urabe, "Galerkins procedure for  nonlinear periodic systems", Archive 

- for  Rational Mechanics - and Analysis, Vol. 20, 1965, pp. 120-152. 

See page 90 of t h i s  report. 



43. Urabe and Reiter, "Numerical computation of nonlinear forced oscil-  

l a t ions  by Galerkins procedure", Journal of Mathematical Analysis - 
and Applications, Vol. 14, 1966, pp. 107-140. 

See page 91 of t h i s  report .  

44. Urabe, "Periodic solutions of d i f f e r e n t i a l  systems , Galerkins pro- 

cedure and the method of averaging", Journal of Di f fe ren t ia l  

Equations, V o l .  2, 1966, pp. 265-280. 

See page 91 of t h i s  report .  

_. 

45. Babuska, Numerical Processes i n  Dif fe ren t ia l  Equations, (New York: - - 
Interscience Publishers , 1966). 

46. Galerkin, "Rods and p la tes .  Ser ies  occuring i n  various questions 

concerning the e l a s t i c  equilibrium of rods and plates ,"  Engineers 

Bulletin (Vestnik inzhenerov) 19, 1915, 897-908. 

47. Green, "An Expansion Method fo r  Parabolic P a r t i a l  Different ia l  

Equations, If Journal of Research of the National Bureau of 

Standards, LI (September 1953) , 127-132. 

- -- - 

48. Hildebrand, Methods of Applied Mathematics. (Englewood Cliffs : - 
Prentice Hall, 1952), p. 286. 

49. Kantorovich, FunctionaL Analysis i n  Normed Spaces, (New York: The - 
e 

MacMillan Co . , 1964). 

50. Locker, "An existence analysis fo r  nonlinear equations i n  Hilbert  

space", Transactions of the American Mathematical Society, Vol. 

128, 3, Sept. 1967, pp. 403-413. 

-- 
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51. Milhlin, "Some sufficient conditions for the convergence of 

Galerkin's method," Uch. zap. Len. gos. un-ta, 135, ser. matem. 

nauk, 21, 1950. (restated in [38]) 

52. Petrov, "Application of Galerkin's method to the problem of stability 

of the flow of a viscous liquid", PMM (Applied Mathematics and 

Mechanics), V o l .  4, 1940, 3-12. 

53. Petryshyn, "On the eigenvalue problem Tu - Su = 0 with unbounded 

and nonsymmetric operators T and S," TID-4500, NMT, 1963. 

54. Petryshyn, "Direct and iterative methods for the solution of linear 

operator equations in Hilbert space, I' Trans. Amer . Math. SOC. , 
VOL 105, 1962, 136-175. 

55. Repman, "A problem in the mathematical bases of Galerkin's method 

for solving problems on the stability of elastic systems, I '  

PMM (Applied Mathematics and Mechanics) 4, 1940. 


